Determining the Concentration of Fluoride in some Water Bodies on the Svrian Coast using Fluoride Selective Electrode

Sadouh Ali Massoud^{1*}, Hajar Naser Nasser², Khalil Ibrahim Alabid³

¹Dept. of Analytical and Natural Chemistry, Faculty of Pharmacy -AL-Andalus University, Tartous, Syria

²Dept. of Chemistry, Faculty of Sciences, Tishreen University

³M.A. in Analytical Chemistry, Dept. of Chemistry, Faculty of Sciences, Tishreen University

*Corresponding author: E-Mail: m.isbera@au.edu.sy

ABSTRACT

This is a study of the concentration of fluoride in some water bodies on the Syrian Coast such as sea water, artesian wells, rivers, dams, wastewater and rain water. It offers a comparison between the concentration of Fluoride (F) standard of the World Health Organization (WHO) and that of the Syrian standard.

All measurements were taken at laboratory temperature. It Measured some of the physical and chemical properties: (Dissolved Oxygen DO, Total Dissolved Solid Substances TDSS, PH, Electrical Conductivity EC, Turbidity TU, Total Alkalinity TA, Fluoride F⁻). It used fluoride selective electrode, pH mater, electrical conductivity and turbidometry. Find all water bodies within the Syrian Specifications for concentration of Fluoride F⁻. Only sea water, Dmsrkho well, Turkmen, Sulayip Artesian Well, Turkmen and Jableh wells were found to be within global standards for concentration of Fluoride F⁻. No correlation between TDSS and concentration of fluoride in fresh water was found. It was expected to find a link between fluoride concentration and TDSS in salt water. However, there was a link between fluoride and the sampling area, the relationship was a positive one.

KEY WORDS: fluoride selective Electrode, Syrian coast, water bodies, DO, TDSS.

1. INTRODUCTION

Electrochemistry plays a very important role in the control and reduction of pollutants, which is instrumental and plays an important role in determining the levels of environmental pollutants where many organic and non-organic environmental contaminants were studied. This has led to increased interest in sensaor Electrochemistry with increasing industrial development because high levels of Environmental pollutants, making use of sensor electrochemistry of various kinds, in particular ion-selective, in all areas of environmental, industry, agriculture, and analysis of medical, and other fields. Therefore, this matter puts the researchers of analytical chemistry, at great responsibility for the development and innovation of new sensors, in order of speed, accuracy, and repeatability of the measurement, and selectivity for specific types of ions (Naser, 2015) The fluoride element is found in the environment and constitutes 0.06 - 0.09 % of the earth's crust (Bratovcic, 2011).

Fluoride is a chemical element with significant effects on human health through drinking water. Fluoride enters the human body through foods and drinks (Zoran, 2010), rice (Anbuvel, 2015), dates (Amar, 2007). Tea is rich in fluoride (Dabeka, 1999; Zhu, 2013; Antonija, 2014) especially black, green and herbal teas (Yuwono, 2005). Biochemical studies have shown that the relationship between the concentration of fluoride is vital and effective. One of the philosophers say: Eeverything could be toxic and nothing is toxic, meaning anything taken with high quantities could turn into being toxic, and safe when taken normally. It should be noted that the amount of toxicity is associated with the response time, quantities, age, sex and weight of people (Al-zamel, 2001). The ideal limit of fluoride intake is agreed upon because of different nutritional conditions from one person to another (Al-Hasbani, 2006). In recently published papers a link was observe between fluoride intake and cancer (Micheal, 2012; Ciljanovic, 2012). Thus, attention should be paid by all institutions and research agencies to determine the concentration of fluoride in nature were used especially selective fluoride Electrode. Hence, the objective of this research is to determine the fluoride ratios in some water bodies on the Syrian coast, the different types of areas such as sea water, artesian wells, rivers, dams and wastewater as well as rain water.

The arm and importance of research: Determining the concentration of fluoride in some water bodies of different types of fresh water and salt scattered in various parts of the Syrian coast as well as a comparison between the World Health Organization standard and Syrian standard specifications for drinking water.

2. MATERIALS AND METHODS

Study area: Some of the water bodies on the Syrian Coast.

Study time: Winter 2017

The samples were collected in containers of polyethylene capacity of 1 liter washed by water distillation ten water sample. The sample was Measured directly to some of the physical and chemical properties: (Dissolved Oxygen DO, Total Dissolved Solid Substances TDSS, PH, Electrical Conductivity EC, Turbidity TU, Total Alkalinity TA, Fluoride F⁻).

The study is based on LTP using fluoride selective electrode. Used to calibrate the electrode fluoride solution (TISAB) from a company established, pH, electrical conductivity and turbidometry).

July - September 2017

ISSN: 0974-2115

Journal of Chemical and Pharmaceutical Sciences

www.jchps.com 3. RESULTS AND DISCUSSION

Table.1. Measures of some physical and chemical properties of water bodies on the Syrian Coast

	Table 1. Measures of some physical and chemical properties of water bodies on the Syrian Coast							
Water	Area sampling	DO	pН	TDSS	EC	⁰ C	TA	TU
Bodies				ppm	µs/cm		ppm	NTU
Artesian	Sulayip Turkmen	7.72	7.19	208	415	23.8	0.247	2.72
Well	Mashqita	7.35	7.30	537	1050	25	50	1.03
	Tartous near the beach	3.26	7.09	3.88	449	25	47	2.07
	Maten Al-sahel							
	Dmsrkho	5.58	7.35	134	766	24.5	189.6	8.2
Wells	Kessab Al-samra	5.71	7.31	165.5	343	25	174	17.9
	City Jableh	7.95	7.03	382	785	25	185.6	0.259
	Lattakia	7.58	7.61	457	910	25	350	2.08
River	Alkabir Alshmaly	7.82	7.42	2270	436	25	115	1.5
	Slenfeh	7.88	7.44	320.4	562.3	25	135	0.707
Springs	Dwyer Reslan (Dreikish)	8.49	7.71	190	349	25	110.4	0.492
	Mount Al-Nabi Matta (Dreikish)	7.53	7.86	50.5	106.4	25	500	0.563
		8.44	7.02	207	428	25	141.6	0.803
	Tartous	4.46	7.58	23600	1300	25	155	3929
The	Baniyas	7.49	8.15	26200	5750	25	78.5	4500
Mediterranean	Ras Shamra	7.52	7.21	24600	932	25	110	1560
Sea	City Jableh (Mina al-azzi)	7.26	7.40	22400	4650	25	154	2335
	Apamea	7.30	7.72	22700	4310	25	158	1506
	Southern Corniche Lattakia	5.88	7.60	23600	4480	26.7	160	2854
Dam	AL-bassel Alyazdiah	7.15	8.19	178.4	355	25	150	2.80
	City Jableh	7.46	7.10	34.6	360	27.3	110	2.59
Rain	Majdoleen Albahr Village	7.06	7.15	52.8	106	25	16	1.88
	Near oil Refinery Baniyas	6.84	6.31	53	1118	25	29.4	10
Wastewater	Near dam Al-bassel	6.96	7.20	181.3	348	25	152	3.46

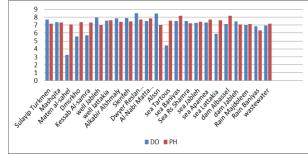


Figure.1. Measurement DO and PH of water samples in some bodies of water on the Syrian Coast

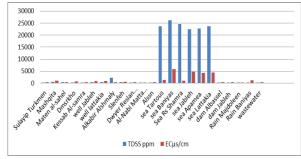


Figure.2. Measurement TDSS and EC of water samples in some bodies of water in the Syrian Coast

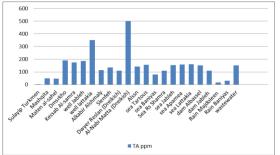


Figure.3. Measurement TA of water samples in some bodies of water on the Syrian Coast

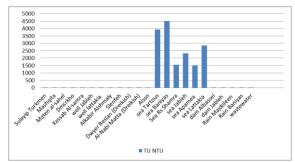


Figure.4. Measurement TU of water samples in some bodies of water in the Syrian Coast

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Table.2. World Health Organization (WHO) and Standard Specifications of the Syrian standard for drinking water

According to		DO	PH	TDSS ppm	EC µs/cm	⁰ C	TA ppm	NTU
World	Health	Range	Range	Range	Range	25	Maximum	Maximum
Organisation (WHO)	5 - 8	6.5 -8.5	300-1000	1500-2000		400	5
Standard		Bigger	Range	Range	Range	25	Maximum	Range
Specifications	Syrian	than 1	6.5 – 9	900-1300	1500-3000		600	1 – 5

Through previous measurements show:

- All the measured water bodies was within range of World Health Organisation in order to DO except artesian well Maten Al-sahel aboard and the beaches of Tartous was under the limit but a well spring of Lattakia and Alssn were above the limit.
- All water bodies within limit the Syrian standard for DO.
- All water bodies conform to the World Health Organisation and for TDSS except Mashqita, Jableh and Slenfeh conformity with World Health Organisation but less than Syrian Specifications. Alkabir Alshmaly and Mediterranean Sea bigger than limit global specifications and Syrian standard.
- All water bodies have been below the permissible limits of the Syrian standard and World Health Organisation for EC.
- All water bodies have been below the permissible limits Syrian standard and World Health Organisation for TA exception of spring Dreikish was above the allowable limit World Health Organisation.
- All water bodies have been below the permissible limits Syrian standard and World Health Organisation for TU exception Dmsrkho, Kessab al-samra and Mediterranean was above the allowable limit World Health Organization.

Table.3-1. Determining the concentration of fluoride in some water bodies on the Syrian Coast

water bodies	Area sampling	Direct	Indirect
Artesian	Sulayip Turkmen	0.640	0.465
Well	Mashqita	0.273	0.281
	Tartous near the beach Maten Al-sahel	0.285	0.280
	Dmsrkho	0.509	0.501
Wells	Kessab Al-samra	0.202	0.190
	City Jableh	0.747	0.741
	Lattakia	0.309	0.301
River	Alkabir Alshmaly	0.270	0.263
Springs	Slenfeh	0.208	0.229
	Dwyer Reslan(Dreikish)	0.248	0.240
	Mount Al-Nabi Matta (Dreikish)	0.245	0.670
	Near Qurfays Village (Alssn)	0.122	0.125

Table.3-2. Determine the concentration of fluoride in some bodies of water in the Syrian Coast

water bodies	Area sampling	Direct	Indirect
	Tartous	0.611	0.570
	Baniyas	0.574	0.594
The Mediterranean	Ras Shamra	0.663	0.590
Sea	City Jableh(Mina al-azzi)	0.599	0.640
	Apamea	0.583	0.570
	Southern Corniche Lattakia	0.59	0.520
Dam AL-bassel Alyazdiah		0.186	0.194
	City Jableh	0.381	0.390
Rain	Majdoleen Albahr Village	0.085	0.083
	Near oil Refinery Baniyas	0.307	0.301
wastewater	Near dam Al-bassel	0.203	0.204

Table.4. World Health Organisation (WHO) and Standard Specifications Syrian for drinking water

According to	concentrations of fluoride
World Health Organisation (WHO)	Range (0.5 -1.5)ppm
(Kalanithiana, 2015)	
Standard Specifications Syrian	Maximum 1.5 ppm

According to previous measurements of all water bodies within the Syrian Specifications.

ISSN: 0974-2115

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

Only sea water and protoplasm wells and wells Dmsrkho Cross Turkmen within World Health Organisation.

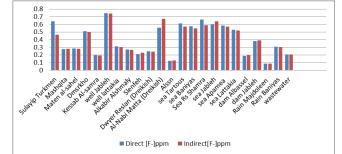


Figure.5. Measurement F⁻ of water samples in some bodies of water in the Syrian Coast 4. CONCLUSION

This research didn't see any correlation between TDSS and DO the concentration of fluoride in fresh water.

It is expected to be a link between fluoride concentration and TDSS in salt water.

There is a link between fluoride and area sampling, the relationship was a positive.

5. ACKNOWLEDGMENT

The authors are grateful to the Department of Chemistry at the Faculty of Science - Tishreen University and the University of Al-Andalus – Tartous for providing financial support.

REFERENCES

Al-Hasbani, Maha and Al-Jibbi, Malak, A Study of Extracting Fluoride from Drinking Water, Journal of Basic Sciences, 22 (1), 2006, 105-106.

Al-Zamel, Ibrahim and Kirrar, Muhammad, Chemistry of the Environment, King Saud University Press, Riyad, 2004, 286-288.

Amar M, Chawki S, fluoride contents in groundwater and the main consumed foods (Dates and tea) in southren Algeria Region, madwell. Journal, 2007, 70-75.

Anbuvld, Kumarean S, Jothibai M, Fluoride accumulation on paddy (Oryza Sativa) and black gram (phaseolus mugo linn) in cutivated Areas of Kanyakumari District – Tamilanadu, India, Cibtech, 2015, 280-285.

Antonija P, Jnte, Josipa G, Mia B, Vesna S, Perica B, Tina V, Determination ion total fluoride content in teas using fluoride ion selective electrode, Int. J. electrochem. sci, 2014, 5409.

Ciljanovic J, Prkic A, Bralic M, Brkljaca M, Determination of fluoride content in tea infusion by using fluoride ion selective electrode, Int, J. Electrochem, sci, 2012, 2927.

Dabeka W, Mckenzie A, Survey of Lead, Cadmiun, Fluoride, Nickel, and Cobalt in Food Composites and Estimation of these Elements by Canadians, Journal of AOAC International, 78 (4), 1999, 897-909.

Syrian Arab Organization for Standardization and Metrology, Drinking Water – second review, Ministry of Industry, Syria, S.N.S, 45, 2007, 3.

Kaianithi M, Dhanapackiam S, Tamilarasi K, Kanagavalli C, Amutha K, Estimation of fluoride ion in ground water of some areas of Theni district by spectrophotometric method, International Journal of Environment. Sciences, 6 (2), 2015, 252.

MichealI L, fluoride drinking water osteosarcoma incidence rates in the continental United States among children and adolescents, Cancer Epidemiology, 2012, 83-88.

Nasser, Hajar, Yusry, Isa and Mus'ab Khalil, Developing and Manufacturing Selective Electrodes for certain Heavy Metal Elements which are Harmful for the Environment, Tishreen University Journal, 2015, 2-3.

Yuwono M, determintion of fluoride in black green and herbal teas by ion selective electrode using a standard – addition method, Maj Ked. Cigi, (Dent J.), 2005.

Zoran M, Fluoride in drinking water and dental fluorosis, Science of the Total Environment, 2010, 3507–3510.

Zuk J, Tang, Ammatinlinnaj J, Tosoi, Hagg U, potentiometric determination of fluoride release from three types of tea leaves, Int .J .Electrochem. Sci, 2013, 11142-11150.